Harmonic maps with noncontact boundary values
نویسندگان
چکیده
منابع مشابه
I ) Introduction 1 to CR geometry and subelliptic harmonic maps . II ) Boundary values of Bergman - harmonic maps
We give an elementary introduction to CR and pseudohermitian geometry, starting from H. Lewy’s legacy (cf. [20]) i.e. tangential Cauchy-Riemann equations on the boundary of the Siegel domain. In this context we describe fundamental objects, such as contact structures, Levi forms, the Tanaka-Webster connection and the Fefferman metric (cf. e.g. [4]). Also naturally arising Hörmander systems of v...
متن کاملS-valued harmonic maps on polyhedra with tangent boundary conditions
A unit-vector field n : P → S2 on a convex polyhedron P ⊂ R3 satisfies tangent boundary conditions if, on each face of P , n takes values tangent to that face. Tangent unit-vector fields are necessarily discontinuous at the vertices of P . We consider fields which are continuous elsewhere. We derive a lower bound E P (h) for the infimum Dirichlet energy Einf P (h) for such tangent unit-vector f...
متن کاملBoundary Regularity and the Dirichlet Problem for Harmonic Maps
In a previous paper [10] we developed an interior regularity theory for energy minimizing harmonic maps into Riemannian manifolds. In the first two sections of this paper we prove boundary regularity for energy minimizing maps with prescribed Dirichlet boundary condition. We show that such maps are regular in a full neighborhood of the boundary, assuming appropriate regularity on the manifolds,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1999
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-99-04627-4